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はしがき 
 

 この論⽂では、ガソリンスタンド (以下 SS) 市場の分析を⾏う。現在 SS 数の減少や EV

⾞の需要の減少、そして⽇⽶の新政権の政策など、⾃動⾞やガソリンに関する話題が絶えず、

SS 市場の将来を予測するのは⾮常に難しい。そこで本論⽂では、静学的なアプローチによ

り SS 市場の現状を分析することで、将来予測の⼀助となるものを提⽰する。また、⽤いる

⼿法は産業に依らないものであり、他業種を分析する際にも応⽤することができるように

なっている。 
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序章 
 

 この論⽂では、ゲーム理論による SS 市場の特徴づけを⾏ったのち、沖縄県の SS に関連

するデータを⽤いることで実証的な分析を⾏う。 

 本論⽂で重要なのは、第 2 章と第 3 章である。第 2 章で論じる理論は純戦略の戦略型ゲ

ームの枠組みで構成される。ゲーム理論の構想は 1928 年の J. von Neumann の論⽂におい

て誕⽣し、その後 1943 年に彼と O. Morgenstern により基本的な枠組みが作り上げられた。

また、ゲーム理論における最も重要な貢献の 1 つは J. Nash による均衡概念、いわゆる「Nash

均衡」であろう。本論⽂ではまず、Bresnahan and Reiss (1991) において提唱された理論を

数学的に、あるいはゲーム理論的に厳密に再定義をするという形で、⼩売店舗たちが競争を

⾏うことを前提とした戦略型ゲームを構築し、その Nash 均衡について論じる。しかしなが

ら実際の SS 市場にはチェーンが多く存在しており、そのような寡占的な状態を表現する理

論を作らねばならない。そこで、チェーンたちのシェアによる利潤の期待値により⼩売店舗

たちが参⼊の判断をするゲームを築いた。さらにプレイヤーの集合が実数全体である場合

についても論じることとした。このような状況は通常のゲーム理論の教科書等には記され

ていないので、理論を構築するのに⼤きな苦労が⽣じた。参⼊店舗数を定義する際には

Lebesgue 測度を⽤いなければならず、Nash 均衡の必要⼗分条件を⽰す際には σ-加法性を

⽤いた背理法を何度も⾏った。このように、過程は複雑なものとなってしまったが、先に述

べた先⾏研究においても仮定されている、Nash 均衡であることと参⼊店舗の利潤がゼロで

あることが同値であるという⾮常に簡潔な結果を確認することができた。 

 第 3 章では、Bresnahan and Reiss (1991) の⼿法を⽤いて実証分析を⾏った。ここでは、

第 2 章で定義した理論の Nash 均衡が現実社会で実現していることを仮定し、構築した理論

の諸要素の値を推定した。最も⾯⽩い結果は、カルテルあるいは暗黙の共謀といった状況に

あるという仮定下では、⽯油系商社の SS は、総合商社系の SS と⽐べて多くの可変利潤を

得ていることである。しかしながら、この結果は有意でないので⼀概に正しいとは⾔えない。

そこでもっともらしい結果を⼀つ挙げることとしよう。それは、可変利潤が参⼊店舗数に反

⽐例していることである。理論的には、例えば競争が⾏われておらず可変費⽤関数が線形で

ある場合に起こり得る結果であり、先に置いた、カルテルあるいは暗黙の共謀という前提の

妥当性を⾼めるものとなっている。なお、この結果は仮定が弱く複雑なモデルと、仮定が強

く簡潔なモデルの⽐較によるものであり、モデル選択の意味でのトレードオフに直⾯した

際の解決法が与えられたともいえよう。 
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第 1 章 ガソリンスタンド市場の現状 
 

 現在、SS 市場やそれに⼤きく関わる産業において、いくつかの⼤きな話題がある。本章

では、それらを⼀通り確認し、その後に今回分析する沖縄県の SS チェーンの様⼦を概観す

る。 

 

1.1 ⾃動⾞やガソリンに関する話題 
1.1.1 ガソリンスタンドの撤退 

 経済産業省次世代燃料供給インフラ研究会 (2018) は、SS の撤退が相次いでいることを

指摘している。その理由として、次の 2 つの事項が挙げられている。1 つは⼈⼝減少で、も

う 1 つは国際的な脱炭素化の動きである。 

 まず 1 つ⽬の⼈⼝減少については、次のように述べられている。2018 年時点ですでに⼈

⼿不⾜や過疎化が絶えない状況であり、今後はますます燃料供給インフラを維持すること

が困難になる。 

 そして 2 つ⽬の脱炭素化に関しては、次のように記述されている。我が国⽇本において

もパリ協定の⽬標達成を⽬指し、2050 年に向けて脱炭素化やエネルギー転換に挑戦するこ

とが必須となっている。燃料においても、⽯油製品が中⼼であるのが、中⻑期的には変化す

ると予想される。 

 

1.1.2 電気⾃動⾞の動向 

 さて、経済産業省次世代燃料供給インフラ研究会 (2018) には⾃動⾞の電化が進展して

いる旨が記されているわけであるが、この報告書の公開から 6 年経った今、電気⾃動⾞を

めぐってどのようなことが起こっているのであろうか。 

 ⽇本経済新聞1)には、半導体不⾜の影響などにより、企業たちが電動化投資の負担に苦し

んでいる事実が述べられており、以前に⾒込まれていたほど電気⾃動⾞への転換が進むか

どうか不明である。 

 また、ロイター2)は、アメリカのトランプ次期⼤統領の政権移⾏チームが、バイデン政権

により導⼊された電気⾃動⾞購⼊者に対する税額控除の廃⽌を提⾔している旨を報道した。 

 
1) ⽇本経済新聞 2024 年 11 ⽉ 15 ⽇朝刊「EV シフト先⾏組快⾛ 7~9 ⽉ テスラ・BYD が増益」. 
2) ロイター 2024 年 12 ⽉ 16 ⽇「⽶政権移⾏チーム、EV ⽀援打ち切りや排ガス規制緩和を勧告」. 
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これらの事実によりアメリカでは電気⾃動⾞の需要が減少する可能性があり、その余波

は⽇本にも及ぶかもしれない。電気⾃動⾞の動向が先⾏き不透明であるために、SS 市場の

今後を予測するのもまた難しいといえよう。 

 

1.1.3 ⽯破新政権のガソリン政策 

 2024 年 12⽉に発表された⾃由⺠主党・公明党 (2024) には、⾃由⺠主党・公明党・国⺠

⺠主党の幹事⻑間で、ガソリン税廃⽌の合意がなされた旨が記されている。これが施⾏され

れば、SS の需要が増加することが⾒込まれる。 

⼀⽅、経済産業省資源エネルギー庁 (2024) によって、2024 年 12⽉ 19 ⽇より SSへの

補助⾦を段階的に減少させることが通知されており、⽇本経済新聞3)によれば、その分を消

費者に転嫁することによる価格上昇が早速始まっている。このような転嫁が相次いだ場合

には、SS の需要は減少する可能性があり、たとえ転嫁されなかったとしても SS の撤退につ

ながる可能性がある。 

このように、⽇本においてもアメリカにおいても SS 市場の需要を⾒通すのは難しい。そ

のようなときに、現時点での SS 市場の様相が判明すれば、それは今後の SS 市場を予測す

る助けになるだろう。 

 

1.2 沖縄県の SS チェーン 
第 3 章で紹介する沖縄県の SS のデータには、チェーンに関するものがある。そこでどの

ようなチェーン企業が存在するのか確認し、そのシェアを⾒ることとしよう。まず、エネル

ギーを主に扱う企業の SS は、ENEOS、apollostation、そしてコスモ⽯油のものがある。

apollostation は出光興産により運営される SS であり、コスモ⽯油はコスモエネルギーホー

ルディングスが運営する SS である。そして、伊藤忠エネクス、三菱商事エネルギーという

総合商社の⼦会社が SS を運営している。さらに、JA グループの全農が運営する JA-SS が

ある。また、独⽴系の SS も存在しており、それらのシェアは (表 1-1) のようになってい

る。なお、チェーン企業たちは基本的にはそれぞれ独⽴に輸⼊から⼩売までの⼯程を担って

いる。 

本論⽂では、⼩売たちが競争する理論や実証分析に加えて、チェーンたちがカルテルを結

んでいることを前提としたものも取り扱う。ここで⼤事な注意をしておくと、チェーンたち

 
3) ⽇本経済新聞 2024 年 12 ⽉ 26 ⽇朝刊「ガソリン、1 年ぶり 180 円台に上昇」. 
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によりカルテルが締結されていることを結論づけているわけではなく、1 つの起こりうる選

択肢としてこのような議論を⾏うのである。 

 

 

表 1-1 沖縄県の SS シェア 

ENEOS 36% 

伊藤忠エネクス 9% 

apollostation 9% 

JA-SS 7% 

コスモ⽯油 1% 

三菱商事エネルギー 1% 

独⽴系/未判明 36% 
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第 2 章 理論分析 
 

 本章では最初に需要の理論を紹介し、その後 Bresnahan and Reiss (1991) にもとづいた

参⼊ゲームの定義を⾏いその Nash 均衡について論じる。そしてチェーン企業たちがカルテ

ルを組んでいることを前提とした筆者独⾃の参⼊ゲームを構築し、最終的にはこれらのゲ

ームのプレイヤーの集合を実数全体とすることで Nash 均衡の必要⼗分条件を簡潔に記述

することを試みる。 

 

2.1 需要の理論 
 本論⽂では、通常の部分均衡理論と全く同じように、準線形の効⽤関数により導出される

需要関数を⽤いる。そこで最初にこの需要の理論について確認する。 

ここでは分析対象となる財と価値尺度財の 2 財モデルを考え、それぞれの消費量を 𝑞 ∈

ℝ!,  𝑚 ∈ ℝ により表す。消費者は 1,2,⋯ , 𝑆 の 𝑆 ∈ ℕ ⼈存在するとし、どの消費者も共通

の便益関数 𝑤:ℝ! → ℝ を持つとする。この 𝑤 は 𝑤"(ℝ!) = ℝ!!,  𝑤"" < 0 なる C2 級関数

であるとし、さらに導関数 𝑤"  は単射であるとする。また、全消費者共通の効⽤関数 

𝑣:ℝ! ×ℝ → ℝ を 

𝑣(𝑞,𝑚) = 𝑤(𝑞) +𝑚 

と定義する。 

ここで分析対象の財の価格を 𝑝 ∈ ℝ!! とし、価値尺度財の価格は 1 とする。全消費者

共通の所得を 𝑀 ∈ ℝ!! とすれば、各消費者の予算制約下の効⽤最⼤化問題は 
	 𝑚𝑎𝑥
#∈ℝ!,'∈ℝ

   𝑣(𝑞,𝑚)    subject	to    𝑝𝑞 + 𝑚 ≤ 𝑀 

となるが、この問題には唯⼀の解 𝑞∗, 𝑚∗ が存在し 

w"(𝑞∗) = 𝑝,  𝑚∗ = 𝑀 − 𝑝𝑞∗ 

を満たす。この事実は 2.5節「最適消費の性質と存在・⼀意性」において証明した。 

 ところで 𝑤" は単射であったので、codomain を w"(ℝ!) = ℝ!! に制限すれば 𝑤" は全

単射となり逆関数 (𝑤"))*: ℝ!! → ℝ! が存在することとなる。これを⽤いれば 

𝑞∗ = (𝑤"))*(𝑝) 

と表すことができる。よって 1⼈の消費者の、分析対象の財に対する需要関数はこの (𝑤"))*

そのものであり、価格が 𝑝 のときの市場の需要は (𝑤"))*(𝑝) ⋅ 𝑆 となる。 
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2.2  ⼩売競争参⼊ゲーム 
 Bresnahan and Reiss (1991) では静学的な参⼊の理論が紹介されており、その理論に基づ

いて実証分析が⾏われている。そこで、このモデルを改めて数学的に厳密に定義し直した上

で、その Nash 均衡について論じる。 

 

2.2.1  ゲームの定義 

まず潜在的参⼊者が有限⼈である場合の静学的な参⼊の理論を構築する。のちに純戦略

の戦略型ゲームとして定義するが、先にプレイヤーの集合と、各プレイヤーの純戦略の集合

を定めておく。 𝐽 ∈ ℕ とし、集合 {1,2,⋯ , 𝐽} の元を潜在的参⼊者とよぶ。この集合がプレ

イヤーの集合である。また、各 𝑗 ∈ {1,2,⋯ , 𝐽} に対して 

𝐴+ = {1,0},  𝐴)+ = N 𝐴+"
+"∈{*,-,⋯,/}∖{+}

 

と定める。この 𝐴+ がプレイヤー 𝑗 の純戦略全体の集合である。1 ∈ 𝐴+ は潜在的参⼊者 𝑗 

が参⼊することを表し、0 ∈ 𝐴+ は 𝑗 が参⼊しないことを表す。さらに 

𝐴 =N𝐴+

/

+2*

 

と定義し、各 𝑗 ∈ {1,2,⋯ , 𝐽} に対して 

𝐴 = 𝐴+ × 𝐴)+ 

と表せるとする。 

このように定義をしておくことで、参⼊店舗数を 

𝑛P𝑎*, 𝑎-, ⋯ , 𝑎/Q =R𝑎+

/

+2*

 

なる関数 𝑛: 𝐴 → {0,1,2⋯ , 𝐽} で定めることができる。これは参⼊することを選んだ潜在的参

⼊者の数を表している。 

 次に、参⼊店舗数のみに依存する価格の関数 𝑝: {1,2,⋯ , 𝐽} → ℝ!! を定義する。この参⼊

店舗数のみに依存するという定義は、競争のあり⽅が予め決まっていることを仮定するこ

ととなっているのである。 

さらに全潜在的参⼊者共通の費⽤関数 𝐶:ℝ! → ℝ!  を、𝑉𝐶(0) = 0 なる可変費⽤関数 

𝑉𝐶:ℝ! → ℝ! と固定費⽤ 𝐹 ∈ ℝ! により通常のミクロ経済学の理論と同様に 

𝐶(𝑞) = 𝑉𝐶(𝑞) + 𝐹 

と定義する。 
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以上でゲームの定義を⾏うための材料は揃ったが、利得関数を定める前に参⼊店舗数の

関数である利潤関数 π: {0,1,2,⋯ , 𝐽, 𝐽 + 1} → ℝ を 

π(𝑛) =

⎩
⎪
⎨

⎪
⎧ ∞																																																																									if					𝑛 = 0

𝑝(𝑛)
(𝑤"))*P𝑝(𝑛)Q ⋅ 𝑆

𝑛 − 𝐶 ]
(𝑤"))*P𝑝(𝑛)Q ⋅ 𝑆

𝑛 ^ 					if					𝑛 ∈ {1,2,⋯ , 𝐽}

								−∞																																																																					if					𝑛 = 𝐽 + 1

 

と定義する。ここで注意せねばならないのが、Nash 均衡の必要⼗分条件を記述するために

必要な、参⼊企業数の端点 𝑛 = 𝐽 + 1 を新たに⽤意している点である。端点 𝑛 = 0, 𝐽 + 1 に

おいては便宜上利潤を無限値としている。それ以外の点では、各店舗が全く同じ需要 

((w"))*(n) ⋅ S)/n を得るとして、通常の理論と同様に利潤の定義を⾏った。 

これを⽤いてプレイヤー 𝑗 の利得関数 𝑢+: 𝐴 → ℝ を次のように定義する。 

𝑢+P𝑎+ , 𝑎)+Q = c
	𝜋 e𝑛P1, 𝑎)+Qf 								if						𝑎+ = 1
									0																								if						𝑎+ = 0

 

そして完備情報戦略型ゲーム 𝑅𝐶𝐺(𝐽) を 

𝑅𝐶𝐺(𝐽) = P{1,2,⋯ , 𝐽}, {𝐴+}+∈{*,-,⋯,/}, {𝑢+}{+∈{*,-,⋯,/})Q 

と定義し J⼈⼩売競争参⼊ゲームとよぶこととする。 

 

2.2.2 Nash 均衡 

 以上で定義したゲームの Nash 均衡について議論することとしよう。まず、利潤関数によ

り Nash 均衡の必要⼗分条件を次のように記述することができる。 

 

定理 1 

 𝑎∗ ∈ 𝐴 に対して以下の 2命題は同値である。 

⑴ 𝑎∗ は 𝑅𝐶𝐺(𝐽) の Nash 均衡である。 

⑵ πP𝑛(𝑎∗)Q ≥ 0 ≥ 𝜋(𝑛(𝑎∗) + 1) 

 

この定理は、参⼊して利潤が正になるなら参⼊し、負になるなら参⼊しないという直感に

合うものである。また、この定理より Nash 均衡が存在するための必要⼗分条件が容易に導

かれる。 
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定理 2 

 以下の 2命題は同値である。 

⑴ 𝑅𝐶𝐺(𝐽) の Nash 均衡が存在する。 

⑵ ∃𝑛 ∈ {0,1,2,⋯ , 𝐽}    				π(𝑛) ≥ 0 ≥ π(𝑛 + 1) 

 

最後に、Nash 均衡における参⼊店舗数が⼀意に定まるための⼗分条件を与える。 

 

定理 3 

 利潤関数 π を 

∃𝑛 ∈ {0,1,2,⋯ , 𝐽}    				π(𝑛) ≥ 0 ≥ π(𝑛 + 1) 

を満たす減少関数とする。このとき 𝑅𝐶𝐺(𝐽) の Nash 均衡が存在し、任意の Nash 均衡 𝑎∗, 𝑏∗ 

に対して 

𝑛(𝑎∗) = 𝑛(𝑏∗) 

が成り⽴つ。 

 

このゲーム 𝑅𝐶𝐺(𝐽) は、実証分析においてとても重要なものとなる。利潤関数を推定す

る際には、このゲームがプレイされており、各市場で Nash 均衡が実現していると仮定する

のである。 

 

2.2.3 利潤の平均可変費⽤による表現 

 平均可変費⽤関数 𝐴𝑉𝐶:ℝ! → ℝ! を 

𝐴𝑉𝐶(𝑞) = l
𝑉𝐶(𝑞)
𝑞

			if			𝑞 ≠ 0

				0									if			𝑞 = 0
 

と定義すると、任意の 𝑛 ∈ {1,2,⋯ , 𝐽} に対して 

π(𝑛) = no𝑝(𝑛) − 𝐴𝑉𝐶 ]
(𝑤"))*P𝑝(𝑛)Q ⋅ 𝑆

𝑛 ^p
(𝑤"))*P𝑝(𝑛)Q

𝑛 q𝑆 − 𝐹 

が成り⽴つ。この式の 𝑆 の係数を以後可変利潤とよぶこととする。実証分析においてはこ

の表現をもとに利潤関数の推定を⾏う。 
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2.2.4 ⼀定価格・線形可変費⽤の仮定 

ここでは単純化のため、全企業が同じ価格で販売することと、可変費⽤関数が線形である

ことを仮定する。数学的には、𝑝 ∈ ℝ!! が存在し任意の 𝑛 ∈ {1,2,⋯ , 𝐽} に対して 𝑝(𝑛) = 𝑝 

となるとし、 𝑐 ∈ ℝ! が存在し任意の 𝑞 ∈ ℝ! に対して 𝑉𝐶(𝑞) = 𝑐𝑞 となるとする。このと

き任意の 𝑛 ∈ {1,2,⋯ , 𝐽} に対して 

π(𝑛) =
(𝑝 − 𝑐)(𝑤"))*(𝑝)

𝑛 𝑆 − 𝐹 

が成り⽴つ。すなわち可変利潤が参⼊店舗数に反⽐例するのである。実証分析では、これを

仮定したモデルも取り扱うこととする。 

 

2.3 チェーンカルテル参⼊ゲーム 
 ここまでは⼩売店舗たちが競争を⾏う状況を考えたが、第 1 章で確認したように実際に

はチェーン企業が多くの割合を占める。そこで、これらの企業たちがカルテルを組んでいる

ことを前提としたゲームを作ってみることとする。 

 

2.3.1  ゲームの定義 

 ここでは、チェーン企業たちによるカルテルが存在し、⼩売店舗はカルテルでの決まり事

に従わざるを得ない状況を考える。まずはチェーン企業たちの⾏動を記述しよう。チェーン

企業全体 {1,2,⋯ , 𝐾} により次のカルテルが組まれるとする。まず各企業 𝑘 ∈ {1,2,⋯ , 𝐾} の

⼩売価格 𝑝4 ∈ ℝ!! がカルテルにより決定される。ここではチェーン 𝑘 に属するすべての

店舗で同じ価格 𝑝4 で販売されると仮定する。また、各チェーン 𝑘 のシェア σ4 ∈ [0,1] が

決定される。ここで ∑ σ56
52* ∈ [0,1] が成り⽴つとする。∑ σ56

52* < 1 の場合には、チェーン

企業たちがチェーンに属さない店舗の存在を許していることとなる。さらに企業 𝑘 は⾃ら

のチェーンに属する各店舗に可変利潤のうち割合 𝑓4 ∈ [0,1] の⽀払いを要求する。カルテ

ルにより決定するこれらの要素の組 

𝐶𝐶 = {(𝑝4 , σ4 , 𝑓4)}4∈{*,-,⋯,7} 

をチェーンカルテルとよぶこととする。本論⽂ではチェーンカルテルがどのように構成さ

れるかということを論じることはしないが、協⼒ゲームの諸概念を⽤いるなどすることで

その理論を構築することも可能だろう。 

 次に⼩売店舗の問題を記述することを試みよう。ここでは、⼩売店舗たちはチェーンカル

テルを知っているが、参⼊の意思決定の時点ではどのチェーンに加⼊するか、あるいは加⼊
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しないかということを知ることはできないと仮定する。したがって、⼩売店舗たちの純戦略

は前節で定めたものと全く同じであるが、利潤関数や利得関数の定義が前節と異なる。そこ

で期待利潤関数 𝐸π: {0,1,2,⋯ , 𝐽} → ℝ をシェアに対する期待値の形で 

𝐸π(𝑛) =

⎩
⎪⎪
⎨

⎪⎪
⎧ ∞																																																																																																																								if	𝑛 = 0				

/ σ! 1(1 − 𝑓!)56𝑝! − 𝐴𝑉𝐶 ;
(𝑤")#$(𝑝!) ⋅ 𝑆

𝑛 ?@
(𝑤")#$(𝑝!)

𝑛 A 𝑆 − 𝐹C
%&$

!'$

		if	𝑛 ∈ {1,2,⋯ , 𝐽}

								−∞																																																																																																																		if		𝑛 = 𝐽 + 1		

 

と定める。まず、添字 𝐾 + 1 について説明しておこう。この添字はチェーンに属さないこ

とを意味する。したがって 𝑓7!* = 0, σ7!* = 1 − ∑ σ47
42*  が成り⽴つこととなる。ここでは

チェーンに属さない場合には価格が必ず 𝑝7!* に決まると仮定する。ここで注意せねばな

らない点が 2 つある。1 つ⽬は、チェーンカルテルはこの 𝐸π を決定していることに他な

らない点である。もう 1点は、費⽤関数はどのチェーンに属していても、あるいは属してい

なくても同じであると仮定している点である。また、⼩売店舗 𝑗 の利得関数 𝐸𝑢+: 𝐴 → ℝ を 

𝐸𝑢+P𝑎+ , 𝑎)+Q = c
	𝐸𝜋 e𝑛P1, 𝑎)+Qf 							if						𝑎+ = 1
									0																										if						𝑎+ = 0

 

と定義し、純戦略の完備情報戦略型ゲーム 𝐶𝐶𝐺(𝐶𝐶, 𝐽) を 

𝐶𝐶𝐺(𝐶𝐶, 𝐽) = P{1,2,⋯ , 𝐽}, {𝐴+}+∈{*,-,⋯,/}, {𝐸𝑢+}+∈{*,-,⋯,/}Q 

と定める。このゲーム 𝐶𝐶𝐺(𝐶𝐶, 𝐽) をチェーンカルテル参⼊ゲームとよぶこととする。 

 

2.3.2 Nash 均衡 

 チェーンカルテル 𝐶𝐶 が与えられたときの⼩売店舗たちのゲーム 𝐶𝐶𝐺(𝐶𝐶, 𝐽) の Nash 均

衡について論じよう。前節で定義したゲーム 𝑅𝐶𝐺(𝐽) では利潤関数により Nash 均衡の必要

⼗分条件を記述することができたが、チェーンカルテルゲーム 𝐶𝐶𝐺(𝐶𝐶, 𝐽) でも同様に期待

利潤関数により Nash 均衡の必要⼗分条件を記述することができる。 

 

定理 4 

 𝑎∗ ∈ 𝐴 に対して以下の 2命題は同値である。 

⑶ 𝑎∗ は 𝐶𝐶𝐺(𝐶𝐶, 𝐽) の Nash 均衡である。 

⑷ EπP𝑛(𝑎∗)Q ≥ 0 ≥ E𝜋(𝑛(𝑎∗) + 1) 
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また、Nash 均衡の存在や均衡店舗数の⼀意性についても 𝑅𝐶𝐺(𝐽) の場合と全く同様に記

述することができる。 

 

定理 5 

 以下の 2命題は同値である。 

⑶ 𝐶𝐶𝐺(𝐶𝐶, 𝐽) の Nash 均衡が存在する。 

⑷ ∃𝑛 ∈ {0,1,2,⋯ , 𝐽}    				𝐸π(𝑛) ≥ 0 ≥ 𝐸π(𝑛 + 1) 

 

定理 6 

 期待利潤関数 𝐸π を 

∃𝑛 ∈ {0,1,2,⋯ , 𝐽}    				𝐸π(𝑛) ≥ 0 ≥ 𝐸π(𝑛 + 1) 

を満たす減少関数とする。このとき 𝐶𝐶𝐺(𝐶𝐶, 𝐽) の Nash 均衡が存在し、任意の Nash 均衡 

𝑎∗, 𝑏∗ に対して 

𝑛(𝑎∗) = 𝑛(𝑏∗) 

が成り⽴つ。 

 

 ここでチェーン企業たちが⼩売店舗の費⽤構造や市場の需要を知っていると仮定しよう。

⼩売店舗が知っていることをチェーン企業たちも知っているというのは直感的にも妥当な

仮定といえよう。このとき以上の定理を鑑みれば、チェーンカルテル 𝐶𝐶 により Nash 均衡

における参⼊店舗数をも操ることができることとなる。特に (定理 6) の前件を満たすよう

な期待利潤関数である場合は、𝐶𝐶 をうまく決めることで参⼊店舗数を確実に 1 つに決める

ことができるのである。 

 

2.3.3 線形可変費⽤の仮定 

 ここで前節でも考えた線形可変費⽤の仮定を考えることとする。すなわち 𝑐 ∈ ℝ! が存

在し任意の 𝑞 ∈ ℝ!! に対して 𝐴𝑉𝐶(𝑞) = 𝑐 となるとする。このとき期待利潤は任意の 𝑛 ∈

{1,2,⋯ , 𝐽} に対して 

𝐸π(𝑛) =
∑ σ4P(1 − 𝑓4)(𝑝4 − 𝑐)(𝑤"))*(𝑝4)Q7!*
42*

𝑛 𝑆 − 𝐹 

となる。実証分析では、この形の期待利潤関数を推定する。 
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2.4 参⼊ゲームの無限拡張 
 ここまで議論してきた 2 つのゲームは、どちらもプレイヤーの集合を {1,2,⋯ , 𝐽} として

きた。しかしながら実は、プレイヤー全体の集合を実数全体 ℝ とすることで Nash 均衡の

条件をより簡潔に記述することができる。 

 

2.4.1 プレイヤーの集合の拡張と参⼊店舗数の再定義 

 プレイヤーの集合を ℝ とし、各プレイヤー 𝑗 ∈ ℝ の純戦略の集合についてはこれまで

と同様に 𝐴+ = {1,0} とする。再度の説明となるが、1 は参⼊することを表し、0 は参⼊し

ないことを表す。また、選択公理を認めることで直積 

𝐴 ≔N𝐴+
+∈ℝ

 

を定義する。さらに、各 𝑗 ∈ ℝ に対して直積 

𝐴)+ ≔ N 𝐴+"
+"∈ℝ∖{+}

 

を定め、 

𝐴 = 𝐴+ × 𝐴)+ 

と表すことができるものとする。 

 ここまでは今まで扱ったゲームと同様の定義であるが、参⼊店舗数の定め⽅は今までと

は趣が異なる。Lebesgue 測度空間 (ℝ, ℱ, µ) を考え、次の⼿順で定義する。まず、対応 𝐸: 𝐴 ↠

ℝ を 
𝐸P𝑎+Q+∈ℝ = {𝑗" ∈ ℝ	 | 𝑎+" = 1} 

と定める。この 𝐸P𝑎+Q+∈ℝ は参⼊することを選んだ⼩売店舗全体の集合を表す。本来ならば、

この集合の⼤きさを測ることで参⼊店舗数を定義すべきであろうが、この集合は可測であ
るとは限らない。そこで、𝐸P𝑎+Q+∈ℝ を最⼩限膨らませることで可測集合にする対応 𝐸�: 𝐴 ↠

ℝ を 

𝐸�(𝑎) =�{𝐵 ∈ ℱ	 |	 𝐸(𝑎) ⊂ 𝐵} 

と定める。この集合を Lebesgue 測度 µ により測ったものを参⼊店舗数とよぶのである。

そこで純戦略の組に参⼊店舗数を対応させる関数 𝑛: 𝐴 → ℝ! を 

𝑛(𝑎) = µ e𝐸�(𝑎)f 

と定義する。 
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2.4.2 ⼩売競争参⼊ゲームの無限拡張 

 ⼩売競争参⼊ゲーム 𝑅𝐶𝐺(𝐽) では、参⼊店舗数のみに依存する価格関数を定めた。そこ

でここでも参⼊店舗数のみに依存する価格関数 𝑝:ℝ!! → ℝ!! を⽤いる。𝑅𝐶𝐺(𝐽) の場合と

定義域が異なるのは、参⼊店舗数と、この後定める利潤関数の定義の仕⽅を変更したためで

ある。そして、これまでと全く同じ費⽤関数を⽤いて利潤関数 π:ℝ!! → ℝ を 

π(𝑛) = 𝑝(𝑛)
(𝑤"))*P𝑝(𝑛)Q ⋅ 𝑆

𝑛 − 𝐶 ]
(𝑤"))*P𝑝(𝑛)Q ⋅ 𝑆

𝑛 ^ 

と定義する。定義域を ℝ! ではなく ℝ!! としたのは、のちに論じるように Nash 均衡にお

ける参⼊店舗数が必ず ℝ!! の元となるからである。最後にプレイヤー 𝑗 ∈ ℝ の利得関数 

𝑢+: 𝐴 → ℝ を 

𝑢+P1, 𝑎)+Q =

⎩
⎪
⎨

⎪
⎧ ∞																		if					𝑛P1, 𝑎)+Q = 0

πe𝑛P1, 𝑎)+Qf 						if					𝑛P1, 𝑎)+Q ∈ e0,∞f

−∞																	if					𝑛P1, 𝑎)+Q =∞

 

𝑢+P0, 𝑎)+Q = 0																																																																															 

と定義し、純戦略の完備情報戦略型ゲーム 𝑅𝐶𝐺 e∞f を 

𝑅𝐶𝐺 e∞f = Pℝ, {𝐴+}+∈ℝ, {𝑢+}+∈ℝQ 

と定義する。このゲームを 𝑅𝐶𝐺(𝐽) の無限拡張とよぶこととする。 

 

2.4.3 チェーンカルテル参⼊ゲームの無限拡張 

 チェーンカルテル参⼊ゲーム 𝐶𝐶𝐺(𝐶𝐶, 𝐽) に関しても、同様の発想により期待利潤関数 

𝐸π:ℝ!! → ℝ を 

𝐸π(𝑛) = Rσ4 n(1 − 𝑓4) o�𝑝4 − 𝐴𝑉𝐶 ]
(𝑤"))*(𝑝4) ⋅ 𝑆

𝑛 ^�
(𝑤"))*(𝑝4)

𝑛 p𝑆 − 𝐹q
7!*

42*

 

と定義し、プレイヤー 𝑗 ∈ ℝ の期待利得関数 𝐸𝑢+: 𝐴 → ℝ を 

𝐸𝑢+P1, 𝑎)+Q =

⎩
⎪
⎨

⎪
⎧ ∞																					if					𝑛P1, 𝑎)+Q = 0

𝐸πe𝑛P1, 𝑎)+Qf 						if					𝑛P1, 𝑎)+Q ∈ e0,∞f

−∞																				if					𝑛P1, 𝑎)+Q =∞

 

𝐸𝑢+P0, 𝑎)+Q = 0																																																																																		 

と定める。そして純戦略の完備情報戦略型ゲーム 𝐶𝐶𝐺 e𝐶𝐶,∞f を 

𝐶𝐶𝐺 e𝐶𝐶,∞f = Pℝ, {𝐴+}+∈ℝ, {𝐸𝑢+}+∈ℝQ 
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と定義し、𝐶𝐶𝐺(𝐶𝐶, 𝐽) の無限拡張とよぶ。 

 

2.4.4 Nash 均衡 

 ここまで定義を⾏ってきた無限拡張の Nash 均衡の必要⼗分条件はどのように記述でき

るのか⾒てみよう。 

 

定理 7 

 任意の 𝑎∗ ∈ 𝐴 に対して以下の 2命題は同値である。 

(1) 𝑎∗ は 𝑅𝐶𝐺 e∞f の Nash 均衡である。 

(2) 𝑛(𝑎∗) ∈ ℝ!! かつ 𝜋P𝑛(𝑎∗)Q = 0 

 

定理 8 

 任意の 𝑎∗ ∈ 𝐴 に対して以下の 2命題は同値となる。 

(1) 𝑎∗ は 𝐶𝐶𝐺 e𝐶𝐶,∞f の Nash 均衡である。 

(2) 𝑛(𝑎∗) ∈ ℝ!! かつ 𝐸𝜋P𝑛(𝑎∗)Q = 0 

 

 これらの定理は、Nash 均衡において必ず利潤は 0となり、さらに利潤が 0となるような

戦略の組は必ず Nash 均衡であることを意味する。この主張は、利潤が 0になるまで参⼊が

続くという通常のミクロ経済学の考え⽅と整合的なものである。これらの定理を⽤いるこ

とで、Nash 均衡が存在するための必要⼗分条件も容易に判明する。 

 

定理 9 

 次の 2命題は同値である。 

(1) 𝑅𝐶𝐺 e∞f の Nash 均衡が存在する。 

(2) π)*(0) ≠ ∅ 

 

定理 10 

 次の 2命題は同値である。 

(1) 𝐶𝐶𝐺 e𝐶𝐶,∞f の Nash 均衡が存在する。 

(2) 𝐸π)*(0) ≠ ∅ 
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 さらに Nash 均衡における店舗数がただ 1 つとなるための必要⼗分条件も容易に確認す

ることができる。 

 

定理 11 

 𝑅𝐶𝐺 e∞f の Nash 均衡が存在するとき、すなわち π)*(0) ≠ ∅ のとき、以下の 2 命題は

同値である。 

(1) 𝑅𝐶𝐺 e∞f の任意の Nash 均衡 𝑎∗, 𝑏∗ に対して 𝑛(𝑎∗) = 𝑛(𝑏∗) が成⽴する。 

(2) π)*(0) は⼀点集合である。 

 

定理 12 

  𝐶𝐶𝐺 e𝐶𝐶,∞f の Nash 均衡が存在するとき、すなわち 𝐸π)*(0) ≠ ∅ のとき、以下の 2命

題は同値である。 

(1) 𝐶𝐶𝐺 e𝐶𝐶,∞f の任意の Nash 均衡 𝑎∗, 𝑏∗ に対して 𝑛(𝑎∗) = 𝑛(𝑏∗) が成⽴する。 

(2) 𝐸π)*(0) は⼀点集合である。 

 

2.4.5 ⼀定価格・線形可変費⽤の仮定のもとでの 𝑹𝑪𝑮e∞f での Lerner指数の導出 

 2.2.4項でおいた仮定をそのまま 𝑅𝐶𝐺 e∞f にも適⽤すれば任意の 𝑛 ∈ ℝ!! に対して 

π(𝑛) =
(𝑝 − 𝑐)(𝑤"))*(𝑝)

𝑛 𝑆 − 𝐹 

が成り⽴つ。この仮定下では限界費⽤もまた⽣産量に依存せず 𝑐 となる。(定理 7) によれ

ば 𝑅𝐶𝐺 e∞f の任意の Nash 均衡 𝑎∗ において 

(𝑝 − 𝑐)(𝑤"))*(𝑝)
𝑛(𝑎∗) 𝑆 − 𝐹 = 0 

が成り⽴つが、(𝑤"))*(𝑝) ≠ 0 のときにはこれを変形すれば 

𝑝 − 𝑐
𝑝 =

𝐹𝑛(𝑎∗)
𝑝(𝑤"))*(𝑝)𝑆 

と Lerner指数の形で表すことができる。そこでこの等式の左辺を市場⽀配⼒の指標と捉え

れば、固定費⽤の増加や消費者数の減少が市場⽀配⼒上昇の要因となるといえる。 

 

2.4.6 𝑹𝑪𝑮e∞f での消費者数の逆算 

 2.2.3項の議論をそのまま 𝑅𝐶𝐺 e∞f にも適⽤すれば、任意の 𝑛 ∈ ℝ!! に対して 
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π(𝑛) = no𝑝(𝑛) − 𝐴𝑉𝐶 ]
(𝑤"))*P𝑝(𝑛)Q ⋅ 𝑆

𝑛 ^p
(𝑤"))*P𝑝(𝑛)Q

𝑛 q𝑆 − 𝐹		 

となるので、(定理 7) によれば Nash 均衡 𝑎∗ においては 

no𝑝P𝑛(𝑎∗)Q − 𝐴𝑉𝐶 ]
(𝑤"))*P𝑛(𝑎∗)Q ⋅ 𝑆

𝑛(𝑎∗) ^p
(𝑤"))*P𝑛(𝑎∗)Q

𝑛(𝑎∗) q𝑆 − 𝐹 = 0 

が成り⽴つ。よって 𝑝P𝑛(𝑎∗)Q ≠ 𝐴𝑉𝐶 e(𝑤"))*P𝑛(𝑎∗)Q ⋅ 𝑆/𝑛(𝑎∗)f かつ (𝑤"))*P𝑛(𝑎∗)Q ≠ 0 の

ときにはこれを変形すれば 

 
𝑆 =

𝐹

�𝑝P𝑛(𝑎∗)Q − 𝐴𝑉𝐶 ]
(𝑤"))*P𝑛(𝑎∗)Q ⋅ 𝑆

𝑛(𝑎∗) ^�
(𝑤"))*P𝑛(𝑎∗)Q

𝑛(𝑎∗)

 
(2.1) 

となる。さらにこのとき 

𝑆
𝑛(𝑎∗) =

𝐹

�𝑝P𝑛(𝑎∗)Q − 𝐴𝑉𝐶 ]
(𝑤"))*P𝑛(𝑎∗)Q ⋅ 𝑆

𝑛(𝑎∗) ^� (𝑤"))*P𝑛(𝑎∗)Q
 

が成⽴する。実証分析では、この逆算を⾏うことで消費者数 𝑆 に相当する値や、各店舗が

抱える消費者数 𝑆/𝑛(𝑎∗) を導き出すのである。 

 

2.5 証明 
最適消費の性質と存在・⼀意性 

 まず解 𝑞∗, 𝑚∗ が存在するとすれば、必ず 𝑝𝑞∗ +𝑚∗ = 𝑀 が成り⽴つ。なぜなら 𝑝𝑞∗ +

𝑚∗ < 𝑀 を仮定すると正実数 ε が存在し 𝑝𝑞∗ + (𝑚∗ + ε) ≤ 𝑀 と予算制約を満たすが、 

𝑣(𝑞∗, 𝑚∗ + ε) = 𝑤(𝑞∗) + (𝑚∗ + ε) > 𝑤(𝑞∗) + 𝑚∗ = 𝑣(𝑞∗, 𝑚∗) 

であるので 𝑞∗, 𝑚∗ が効⽤最⼤化問題の解であることに⽭盾するからである。これにより 
𝑚∗ = 𝑀 − 𝑝𝑞∗ が成り⽴つので、この問題の解 𝑞∗ は無制約の最⼤化問題 	𝑚𝑎𝑥

#∈ℝ!
  𝑤(𝑞) +𝑀 −

𝑝𝑞 の解に他ならない。そこでこれを⼆階微分すると、𝑤"" < 0 から 

𝑑-(𝑤(𝑞) +𝑀 − 𝑝𝑞)
𝑑𝑞- = 𝑤""(𝑞) < 0 

と⼆階条件が成⽴するので解 𝑞∗ は⼀階条件 𝑤"(𝑞∗) − 𝑝 = 0 すなわち 

𝑤"(𝑞∗) = 𝑝 
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を満たす。また、𝑤"(ℝ!) = ℝ!! からこのような 𝑞∗ が存在し、𝑤" が単射であることから

𝑞∗ は⼀意に定まる。したがって解はただ 1 つ存在する。                           □ 

 

定理 1 

(1)⇒(2) 

𝑅𝐶𝐺(𝐽) の Nash 均衡 𝑎∗ を任意にとり、各 𝑗 ∈ {1,2,⋯ , 𝐽} に対して 𝑎∗ = P𝑎+∗, 𝑎)+∗ Q と表

す。まず 𝑛(𝑎∗) ∈ {1,2,⋯ , 𝐽 − 1} とすると、𝑎+∗ = 1 なる 𝑗 ∈ {1,2,⋯ , 𝐽} と 𝑎+"
∗ = 0 なる 𝑗" ∈

{1,2,⋯ , 𝐽} が存在する。そこでこのような 𝑗, 𝑗" を任意にとると、Nash 均衡の定義から 

πP𝑛(𝑎∗)Q = 𝑢+P𝑎+∗, 𝑎)+∗ Q ≥ 𝑢+P0, 𝑎)+∗ Q = 0 = 𝑢+"P𝑎+"
∗ , 𝑎)+"

∗ Q ≥ 𝑢+"P1, 𝑎)+"Q = 𝜋(𝑛(𝑎∗) + 1) 

が従う。 

次に 𝑛(𝑎∗) = 0 とする。このとき任意の 𝑗 ∈ {1,2,⋯ , 𝐽} に対して 𝑎+∗ = 0 であるので

Nash 均衡の定義から 

𝜋P𝑛(𝑎∗)Q = π(0) =∞ ≥ 0 = 𝑢+P𝑎+∗, 𝑎)+∗ Q ≥ 𝑢+P1, 𝑎)+∗ Q = 𝜋(𝑛(𝑎∗) + 1) 

が従う。 

最後に 𝑛(𝑎∗) = 𝐽 とする。このとき任意の 𝑗 ∈ {1,2, … , 𝐽} に対して 𝑎+∗ = 1 であるので

Nash 均衡の定義から 

𝜋P𝑛(𝑎∗)Q = 𝑢+P𝑎+∗, 𝑎)+∗ Q ≥ u8P0, a)8∗ Q = 0 ≥ −∞ = 𝜋(𝑛(𝑎∗) + 1) 

が従う。以上より、いかなる場合にも πP𝑛(𝑎∗)Q ≥ 0 ≥ π(𝑛(𝑎∗) + 1) が成⽴する。 

(2)⇒(1) 

𝜋P𝑛(𝑎∗)Q ≥ 0 ≥ 𝜋(𝑛(𝑎∗) + 1) を満たすような 𝑎∗ ∈ 𝐴 を任意にとり、各 𝑗 ∈ {1,2,⋯ , 𝐽} 

に対して𝑎∗ = P𝑎+∗, 𝑎)+∗ Q と表す。このとき、𝑎+∗ = 1 なら 

𝑢+P𝑎+∗, 𝑎)+∗ Q = 𝜋P𝑛(𝑎∗)Q ≥ 0 = 𝑢+P0, 𝑎)+∗ Q 

となり、𝑎+∗ = 0 なら 

𝑢+P𝑎+∗, 𝑎)+∗ Q = 0 ≥ π(𝑛(𝑎∗) + 1) = 𝑢+P1, 𝑎)+∗ Q 

となるので 𝑎∗ はNash均衡である。                                               □ 

 

定理 2 

(1)⇒(2) 

 𝑅𝐶𝐺(𝐽) の Nash 均衡が存在するとし、その Nash 均衡 𝑎∗ を任意にとると、(定理 1) よ

り 𝜋P𝑛(𝑎∗)Q ≥ 0 ≥ 𝜋(𝑛(𝑎∗) + 1) となるので (2) が従う。 

(2)⇒(1) 
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(2) のような 𝑛 ∈ {0,1,2,⋯ , 𝐽} を任意にとる。そこで 𝑎 ∈ 𝐴 を、𝑛 = 0 なら 零ベクトルと

定め、𝑛 ≠ 0 なら第 1,2,⋯ , n 成分が 1 でそれ以外の成分が 0 のベクトルと定義すれば 

𝑛(𝑎) = 𝑛 であるので (定理 1) から 𝑎 は 𝑅𝐶𝐺(𝐽) の Nash 均衡である。         □ 

 

定理 3 

前提と (定理 2) から Nash 均衡が存在する。さらに π が減少関数であることから 

𝜋(𝑛) ≥ 0 ≥ 𝜋(𝑛 + 1) 

なる 𝑛 ∈ {0,1,2,⋯ , 𝐽} はただ⼀つに定まる。よって (定理 1) から任意の Nash 均衡 𝑎∗, 𝑏∗

は 𝑛(𝑎∗), 𝑛(𝑏∗) = 𝑛 を満たすので主張が従う。                     □ 

 

定理 4,5,6 

 (定理 1,2,3) の証明の 𝑢, π をそれぞれ 𝐸𝑢, 𝐸π とおきかえれば良い。               □ 

 

定理 7 

(1)⇒(2) 

 𝑅𝐶𝐺 e∞f の Nash 均衡 𝑎∗ を任意にとり、各 𝑗 ∈ ℝ に対して 𝑎∗ = P𝑎+∗, 𝑎)+∗ Q と表す。こ

こでまず 𝑛(𝑎∗) ∈ ℝ!! を⽰す。そこで最初に 𝑛(𝑎∗) = 0 を仮定すると、𝑗 ∈ ℝ が存在し 

𝑎+∗ = 0 となる。このとき 𝐸(𝑎∗) が可測であるとすると 𝐸�(𝑎∗) = 𝐸(𝑎∗) から 𝑗 ∈ ℝ ∖ 𝐸�(𝑎∗) 

となるので Lebesgue 測度 µ の σ-加法性により 

𝑛P1, 𝑎)+∗ Q = µP𝐸�(𝑎∗) ∪ {𝑗}Q = µ e𝐸�(𝑎∗)f + µ({𝑗}) = 𝑛(𝑎∗) + 0 = 0 + 0 = 0 

となる。よって 

𝑢+P1, 𝑎)+∗ Q =∞ > 0 = 𝑢+P𝑎+∗, 𝑎)+∗ Q 

が成⽴し 𝑎∗ が Nash 均衡であることに⽭盾する。よって 𝐸(𝑎∗) は可測でない。このとき 

𝑗 ∈ 𝐸�(𝑎∗) ∖ 𝐸(𝑎∗) が存在するが、この 𝑗 に対して 

𝑛P1, 𝑎)+∗ Q = µe𝐸�(𝑎∗)f = 𝑛(𝑎∗) = 0 

となるのでやはり 

𝑢+P1, 𝑎)+∗ Q =∞ > 0 = 𝑢+P𝑎+∗, 𝑎)+∗ Q 

が成り⽴ち 𝑎∗ が Nash 均衡であることに⽭盾する。したがって 𝑛(𝑎∗) = 0 にはなり得な

い。 

次に 𝑛(𝑎∗) =∞ を仮定すると 𝐸�(𝑎∗) ≠ ∅ であるので 𝐸(𝑎∗) ≠ ∅ も成⽴する。すなわち 

𝑗 ∈ ℝ が存在し 𝑎+∗ = 1 となる。するとこの 𝑗 に対して 
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𝑢+P0, 𝑎)+∗ Q = 0 > −∞ = 𝑢+P𝑎+∗, 𝑎)+∗ Q 

となるので 𝑎∗ が Nash 均衡であることに⽭盾する。したがって 𝑛(𝑎∗) ≠∞ である。以上

より 𝑛(𝑎∗) ∈ ℝ!! となることが⽰された。 

ここからは πP𝑛(𝑎∗)Q = 0 であることを⽰す。そこでまず πP𝑛(𝑎∗)Q > 0 を仮定する。こ

のとき 𝐸(𝑎∗) が可測であるとすると、𝑛(𝑎∗) ≠∞ から 𝐸(𝑎∗) = 𝐸�(𝑎∗) ≠ ℝ となるので 

𝑎+∗ = 0 なる 𝑗 ∈ ℝ が存在する。このような 𝑗 に対して µ の σ-加法性より 

𝑛P1, 𝑎)+∗ Q = µP𝐸�(𝑎∗) ∪ {𝑗}Q = µe𝐸�(𝑎∗)f + µ({𝑗}) = 𝑛(𝑎∗) + 0 = 𝑛(𝑎∗) 

となるので 

𝑢+P1, 𝑎)+∗ Q = π e𝑛P1, 𝑎)+∗ Qf = πP𝑛(𝑎∗)Q > 0 = 𝑢+P𝑎+∗, 𝑎)+∗ Q 

が成り⽴つ。これは 𝑎∗ が Nash 均衡であることに⽭盾するので 𝐸(𝑎∗) は可測でない。こ

のとき 𝑗 ∈ 𝐸�(𝑎∗) ∖ 𝐸(𝑎∗) が存在する。このような 𝑗 に対して 

𝑛P1, 𝑎)+∗ Q = µ e𝐸�(𝑎∗)f = 𝑛(𝑎∗) 

となるので 

𝑢+P1, 𝑎)+∗ Q = π e𝑛P1, 𝑎)+∗ Qf = πP𝑛(𝑎∗)Q > 0 = 𝑢+P𝑎+∗, 𝑎)+∗ Q 

が従う。これはやはり 𝑎∗ が Nash 均衡であることに⽭盾するので仮定 πP𝑛(𝑎∗)Q > 0 は成

⽴し得ない。 

よって πP𝑛(𝑎∗)Q ≤ 0 となるが、最後に πP𝑛(𝑎∗)Q < 0 を仮定してみる。いま 𝑛(𝑎∗) ≠ 0 

であるので 𝐸�(𝑎∗) ≠ ∅ であり 𝐸(𝑎∗) ≠ ∅ が成り⽴つ。よって 𝑎+∗ = 1 なる 𝑗 ∈ ℝ が存在す

るが、このような 𝑗 に対して 

𝑢+P0, 𝑎)+∗ Q = 0 > πP𝑛(𝑎∗)Q = 𝑢+P𝑎+∗, 𝑎)+∗ Q 

となる。これは 𝑎∗ が Nash 均衡であることに⽭盾するので仮定 πP𝑛(𝑎∗)Q < 0 は不成⽴で

あり πP𝑛(𝑎∗)Q = 0 が従う。 

(2)⇒(1) 

 𝑛(𝑎∗) ∈ ℝ!!,  𝜋P𝑛(𝑎∗)Q = 0 なる 𝑎∗ ∈ 𝐴 を任意にとり、各 𝑗 ∈ ℝ に対して 𝑎∗ = P𝑎+∗, 𝑎)+∗ Q 

と表す。いま 𝑛(𝑎∗) ∈ ℝ!!  から 𝐸�(𝑎∗) ≠ ∅,  𝐸�(𝑎∗) ≠ ℝ  が成り⽴つ。よって 𝐸(𝑎∗) ≠

∅,  𝐸(𝑎∗) ≠ ℝ となるので 𝑗, 𝑗" ∈ ℝ が存在し 𝑎+∗ = 1,  𝑎+"
∗ = 0 が成⽴する。そこでこのよう

な 𝑗 を任意にとれば 

𝑢+P𝑎+∗, 𝑎)+∗ Q = πP𝑛(𝑎∗)Q = 0 = 𝑢+P0, 𝑎)+∗ Q 

となるので 𝑎+∗ = 1 は 𝑎)+∗  に対する最適反応に属する。 

次に 𝑎+"
∗ = 0 なる 𝑗" を任意にとる。そこでまず 𝑗" ∈ 𝐸�(𝑎∗) ∖ 𝐸(𝑎∗) とすると 

𝑛P1, 𝑎)+"
∗ Q = µe𝐸�(𝑎∗)f = 𝑛(𝑎∗) 
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となるので 

𝑢+"P𝑎+"
∗ , 𝑎)+"

∗ Q = 0 = πP𝑛(𝑎∗)Q = πe𝑛P1, 𝑎)+"
∗ Qf = 𝑢+"P1, 𝑎)+"

∗ Q 

が成⽴する。よってこのとき 𝑎+"
∗ = 0 は 𝑎)+"

∗  に対する最適反応に属する。また、𝑗" ∉ 𝐸�(𝑎∗) 

とすると µ の σ-加法性から 

𝑛P1, 𝑎)+∗ Q = µP𝐸�(𝑎∗) ∪ {𝑗"}Q = µe𝐸�(𝑎∗)f + µ({𝑗"}) = 𝑛(𝑎∗) + 0 = 𝑛(𝑎∗) 

が成り⽴つのでやはり 

𝑢+"P𝑎+"
∗ , 𝑎)+"

∗ Q = 0 = πP𝑛(𝑎∗)Q = πe𝑛P1, 𝑎)+"
∗ Qf = 𝑢+"P1, 𝑎)+"

∗ Q 

が従う。よってこの場合も 𝑎+"
∗ = 0 は 𝑎)+"

∗  に対する最適反応に属する。以上より、いかな

る場合も全てのプレイヤー 𝑗 ∈ ℝ に対して 𝑎+∗ は 𝑎)+∗  に対する最適反応に属するので 𝑎∗ 

は 𝑅𝐶𝐺 e∞f の Nash 均衡である。                                                □ 

 

定理 9 

(1)⇒(2) 

 𝑅𝐶𝐺 e∞f の Nash 均衡 𝑎∗ が存在するとすれば、(定理 7) より 𝑛(𝑎∗) ∈ ℝ!!,  πP𝑛(𝑎∗)Q =

0 が成り⽴つ。よって 𝑛(𝑎∗) ∈ π)*(0) となり (2) が従う。 

(2)⇒(1) 

 (2) が成り⽴つとすると、𝑛∗ ∈ ℝ!! が存在し π(𝑛∗) = 0 となる。そこで 𝑗 ∈ [0, 𝑛∗] に対
しては 𝑎+ = 1 で、𝑗 ∈ ℝ ∖ [0, 𝑛∗] に対しては 𝑎+ = 0 なる純戦略の組 P𝑎+Q+∈ℝ ∈ 𝐴 をとれば、

𝑛P𝑎+Q+∈ℝ = 𝑛∗ であるので π e𝑛P𝑎+Q+∈ℝf = π(𝑛∗) = 0 が成り⽴つ。したがって (定理 7) よ

りこの P𝑎+Q+∈ℝ は 𝑅𝐶𝐺 e∞f の Nash 均衡であり、(1) が成⽴する。                   □ 

 

定理 11 

(1)⇒(2) 

 対偶を⽰す。そこで π)*(0) が⼀点集合でないとすると、𝑛∗ ≠ 𝑛∗" なる 𝑛∗, 𝑛∗" ∈ ℝ!! が

存在し π(𝑛∗), πP𝑛∗"Q = 0 となるので、(定理 9) の証明と同様にすれば 𝑛(𝑎) = 𝑛∗,  𝑛(𝑏) =

𝑛∗"  なる純戦略の組 𝑎, 𝑏 ∈ 𝐴 を作ることができる。(定理 7) よりこれらは 𝑅𝐶𝐺 e∞f の

Nash 均衡であるが、𝑛(𝑎) = 𝑛∗ ≠ 𝑛∗" = 𝑛(𝑏) となるので (1) の否定が成⽴する。 

(2)⇒(1) 

 対偶を⽰す。そこで 𝑛(𝑎∗) ≠ 𝑛(𝑏∗) なる 𝑅𝐶𝐺 e∞f の Nash 均衡 𝑎∗, 𝑏∗ が存在するとす

れば、(定理 7) より πP𝑛(𝑎∗)Q, πP𝑛(𝑏∗)Q = 0 であるので 𝑛(𝑎∗), 𝑛(𝑏∗) ∈ π)*(0) となる。し

たがって (2) の否定が成⽴する。                                                 □ 
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定理 8,10,12 

 (定理 7,9,11) の証明の 𝑢, π をそれぞれ 𝐸𝑢, 𝐸π とおきかえれば良い。              □ 

 

  



 

 22 

第 3 章 実証分析 
 

 この章では、Bresnahan and Reiss (1991) の⽅法を⽤いて、これまで論じてきたいくつか

のゲームの利潤関数や期待利潤関数を推定する。その上で、前章で述べた消費者数の逆算を

⾏ったり、2.2.4 項でおいたようないささか強い仮定が妥当であるのかどうかを確かめたり

する。 

 

3.1 ⼩売競争参⼊ゲームの利潤関数の推定と無限拡張による参⼊閾値の導出 
データにより各市場 𝑚 ∈ {1,2,⋯ ,𝑀} (𝑀 ∈ ℕ) に関して参⼊店舗数 𝑛' ∈ ℤ!  と消費者

数 𝑀𝑆' ∈ ℕ 、隣接市場の消費者数 𝑁𝑆' ∈ ℕ そして離島のとき 1 をとるダミー 𝐼' ∈ {0,1} 

が与えられているとする。そこで 

𝐽 = max{ 𝑛*, 𝑛-, ⋯ , 𝑛9} 

とし⼩売競争参⼊ゲーム 𝑅𝐶𝐺(𝐽) がプレイされていると仮定することで、利潤関数を推定

することを考える。なお本節の議論の多くは、⽯橋 (2021) や上武ら (2021) にもとづいて

いる。 

 

3.1.1 推定する利潤関数 

 それでは実際に 𝑅𝐶𝐺(𝐽) をもとに推定する利潤関数を作ってみよう。𝑅𝐶𝐺(𝐽) の利潤関数 

π は 

π(𝑛) =

⎩
⎪⎪
⎨

⎪⎪
⎧ ∞																																																																																																	if					𝑛 = 0

no𝑝(𝑛) − 𝐴𝑉𝐶 ]
(𝑤"))*P𝑝(𝑛)Q ⋅ 𝑆

𝑛 ^p
(𝑤"))*P𝑝(𝑛)Q

𝑛 q𝑆 − 𝐹					if					𝑛 ∈ {1,2,⋯ , 𝐽}

								−∞																																																																																												if					𝑛 = 𝐽 + 1

 

であったが、ここで π が減少的であることと、π(𝑛) ≥ 0 ≥ π(𝑛 + 1) なる 𝑛 ∈ {0,1,2,⋯ , 𝑗} 

が存在することを仮定すれば (定理 2,3) より Nash 均衡が存在し、その均衡店舗数は⼀意

に定まる。そこで、推定する利潤関数 Π: {1,2,⋯ ,𝑀} × {0,1,2,⋯ , 𝐽, 𝐽 + 1} × ℕ × ℕ × {0,1} ×

Θ → ℝ を 

Π(𝑚, 𝑛,𝑀𝑆,𝑁𝑆, 𝐼, θ) = �
∞																																																																										if					𝑛 = 0

𝑉(𝑛,𝑀𝑆,𝑁𝑆, 𝐼, θ)𝑆(𝑀𝑆,𝑁𝑆, 𝐼, θ) − Γ(𝐼, θ) + ε'						if					𝑛 ∈ {1,2,⋯ , 𝐽}
								−∞																																																																						if				𝑛 = 𝐽 + 1
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と定義する。この関数の各要素を説明しておこう。まず θ はパラメーターを表しており、

Θ はその全体である⺟数空間のことである。そして π における 𝑆 とその係数に対応する

のが、関数 𝑆:ℕ × ℕ × {0,1} ×Θ → ℝ と 𝑉: {1,2,⋯ , 𝐽} × ℕ × ℕ × {0,1} ×Θ → ℝ である。こ

こで、𝑉 は参⼊店舗数 𝑛 に関して減少的であると仮定する。これは、π の減少性の仮定に

より可変利潤もまた参⼊店舗数に関して減少的となることに由来する。また、Γ: {0,1} ×Θ 

は π における固定費⽤ 𝐹 に対応する関数である。そして ε' は標準正規分布に従う市場

に関して独⽴の誤差項である。 

 

3.1.2 尤度関数とその最尤推定量 

 まず (定理 1) にもとづいて Nash 均衡に相当する概念を定める。そこで市場 𝑚 ∈

{1,2,⋯ ,𝑀} において式 

Π(𝑚, 𝑛', 𝑀𝑆', 𝑁𝑆', 𝐼', θ) ≥ 0 ≥Π(𝑚, 𝑛' + 1,𝑀𝑆', 𝑁𝑆', 𝐼', θ) 

が成⽴していることを、市場 𝑚  は均衡状態にあるということとする。ここで関数 

Π�: {0,1,2,⋯ , 𝐽, 𝐽 + 1} × ℕ × ℕ × {0,1} ×Θ → ℝ を 

Π�(𝑛,𝑀𝑆,𝑁𝑆, 𝐼, θ) = �
∞																																																															if					𝑛 = 0

𝑉(𝑛,𝑀𝑆,𝑁𝑆, 𝐼, θ)𝑆(𝑀𝑆,𝑁𝑆, 𝐼, θ) − Γ(𝐼, θ)					if					𝑛 ∈ {1,2,⋯ , 𝐽}
								−∞																																																										if					𝑛 = 𝐽 + 1

 

と 定 義 し 、−∞+ ε' = −∞  を仮定 す れ ば任意の  (𝑚, 𝑛,𝑀𝑆,𝑁𝑆, 𝐼, θ) ∈ {1,2,⋯ ,𝑀} ×

{0,1,2,⋯ , 𝐽, 𝐽 + 1} × ℕ × ℕ × {0,1} ×Θ に対して 

Π(𝑚, 𝑛,𝑀𝑆,𝑁𝑆, 𝐼, θ) =Π�(𝑛,𝑀𝑆,𝑁𝑆, 𝐼, θ) + ε' 
が成り⽴つ。 

すると、市場 𝑚 が均衡状態にあることの定義式は Π� により 

−Π�(𝑚, 𝑛' + 1,𝑀𝑆', 𝑁𝑆', 𝐼', θ) ≥ ε' ≥ −Π�(𝑚, 𝑛', 𝑀𝑆', 𝑁𝑆', 𝐼', θ) 
と表される。したがって ε' が標準正規分布に従うことから均衡状態にある確率は、定義

域を ℝ に拡張し 

Φ e∞f = lim
:→∞
Φ(𝑥) = 1,  Φ e−∞f = lim

:→)∞
Φ(𝑥) = 0 

と定めることで無限値の処理を⾏った標準正規分布の累積分布関数 Φ により 

Φ]−Π�(𝑚, 𝑛' + 1,𝑀𝑆', 𝑁𝑆', 𝐼', θ)^ −Φ]−Π�(𝑚, 𝑛', 𝑀𝑆', 𝑁𝑆', 𝐼', θ)^ 

と表すことができる。これを変形すれば 
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Φ]Π�(𝑚, 𝑛', 𝑀𝑆', 𝑁𝑆', 𝐼', θ)^ −Φ]Π�(𝑚, 𝑛' + 1,𝑀𝑆', 𝑁𝑆', 𝐼', θ)^ 

となり、これが市場 𝑚 が均衡状態にある確率である。ただし、いま Π� は参⼊店舗数に関
して減少的であるので 

Π�(𝑚, 𝑛', 𝑀𝑆', 𝑁𝑆', 𝐼', θ) >Π
�(𝑚, 𝑛' + 1,𝑀𝑆', 𝑁𝑆', 𝐼', θ) 

が成り⽴ち、この確率が負の値になることはない。つまり、必ず 0 以上 1 以下の値になる

のである。 

 誤差項 ε' が市場 𝑚 に関して独⽴であることを踏まえれば、全ての市場が均衡状態に

ある確率は、各市場が均衡状態にある確率の積 

N�Φ]Π�(𝑚, 𝑛', 𝑀𝑆', 𝑁𝑆', 𝐼', θ)^ −Φ]Π�(𝑚, 𝑛' + 1,𝑀𝑆', 𝑁𝑆', 𝐼', θ)^�
9

'2*

 

により表される。そこでパラメーターによる関数 ℒ:Θ → [0,1] を 

ℒ(θ) = N�Φ]Π�(𝑚, 𝑛', 𝑀𝑆', 𝑁𝑆', 𝐼', θ)^ −Φ]Π�(𝑚, 𝑛' + 1,𝑀𝑆', 𝑁𝑆', 𝐼', θ)^�
9

'2*

 

と定めることとし、これを尤度関数とよぶ。そこで全ての市場が均衡状態にあることを仮定

すれば、考えるべき問題は尤度関数最⼤化問題	

max
<∈Θ

		ℒ(θ)	

ということになる。なぜなら、全ての市場が均衡状態にある確率が最も⼤きくなるようなパ

ラメーターが⼀番もっともらしいものであるからである。そこでこの最⼤化問題の解を導

出し、それを最尤推定量とよぶのである。しかしながら、尤度関数 ℒ はその定義から計算

が⾯倒である。そこで⾃然対数をとれば、 

ln ℒ (θ) = R ln�Φ]Π�(𝑚, 𝑛', 𝑀𝑆', 𝑁𝑆', 𝐼', θ)^ −Φ]Π�(𝑚, 𝑛' + 1,𝑀𝑆', 𝑁𝑆', 𝐼', θ)^�
9

'2*

 

と和の形で表すことができる。さらに、任意の θ, θ" ∈Θ に対して 

ℒ(θ) ≤ ℒ(θ") ⇔ lnℒ (θ) ≤ lnℒ (θ") 

となることを踏まえれば、最尤推定量は問題 

max
<∈Θ

			ln	ℒ(θ) 

の解に他ならない。そこで実際推定を⾏う際には後者の対数尤度最⼤化を⾏うのである。 
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3.1.3 参⼊閾値の導出 

 Bresnahan and Reiss (1991) にならって、最尤推定量 θ� の推定ののち、各参⼊店舗数 𝑛 ∈

{1,2,⋯ , 𝐽} が実現するための消費者数を求めることとしよう。𝑉 が 𝑀𝑆,𝑁𝑆 に依存しない

ときには、便宜上 𝑉P𝑛, 𝐼, θ�Q のように表せば、𝑅𝐶𝐺(𝐽) を無限拡張することで消費者数を逆

算した式 (2.1) を⽤いて 

𝑆= =
e∑ 𝑛'ΓP0, θ�Q'∈{'∈{*,-,⋯,9} | @#2A} +∑ 𝑛'ΓP1, θ�Q'∈{'∈{*,-,⋯,9} | @#2*} f /∑ 𝑛'9

'2*

P∑ 𝑛'𝑉P𝑛, 0, θ�Q'∈{'∈{*,-,⋯,9} | @#2A} +∑ 𝑛'𝑉P𝑛, 1, θ�Q'∈{'∈{*,-,⋯,9} | @#2*} Q/∑ 𝑛'9
'2*

 

と定義することができる。このような複雑な式となっているのは離島である場合とそうで

ない場合を⼀緒くたに扱っているためであるが、単にそれぞれの店舗数でウェイト付けた

平均を求めているに過ぎない。また、これをもとに 1 つの店舗が抱える消費者数 

𝑠= ≔
𝑆=
𝑛  

も導出する。さらに、参⼊店舗が 1 つ増えることによる競争の度合いの増加を表す指標で

ある 𝑠=!*/𝑠= も導き出し、有限列 (𝑆=, 𝑠=, 𝑠=!*/𝑠=)=2*
/  を参⼊閾値とよぶこととする。 

 

3.2 チェーンカルテル参⼊ゲームの 
期待利潤関数及びチェーンカルテルの推定 

前節で⽤いたデータに加えて、各市場 𝑚 におけるチェーンと独⽴系のシェア σ' =

Pσ'*, σ'-, ⋯ , σ'7 , σ'(7!*)Q が与えられているとする。ここで、のちの表記を簡単にするた

めに、ありうるシェア全体すなわち {(σ*, σ-, ⋯ , σ7 , σ7!*) ∈ [0,1]7!*	 |	  ∑ σ47!*
42* = 1} を Σ 

と表すこととする。そこで前節と同様に 𝐽  を定めてチェーンカルテル参⼊ゲーム 

𝐶𝐶𝐺(𝐶𝐶, 𝐽) がプレイされていると仮定することで、利潤関数を推定することを考える。こ

のときシェア σ' はチェーンカルテルにより決まっていると仮定されることとなる。 

 それでは実際に 𝐶𝐶𝐺(𝐽) をもとに推定する利潤関数を作ってみよう。𝐶𝐶𝐺(𝐶𝐶, 𝐽) の期待

利潤関数 𝐸π は 

𝐸π(𝑛) =

⎩
⎪⎪
⎨

⎪⎪
⎧ ∞																																																																																																																								if	𝑛 = 0				

/ σ! 1(1 − 𝑓!)56𝑝! − 𝐴𝑉𝐶 ;
(𝑤")#$(𝑝!) ⋅ 𝑆

𝑛 ?@
(𝑤")#$(𝑝!)

𝑛 A 𝑆 − 𝐹C
%&$

!'$

		if	𝑛 ∈ {1,2,⋯ , 𝐽}

								−∞																																																																																																																		if		𝑛 = 𝐽 + 1		
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であるが、ここで 𝐸π が減少的であることと、𝐸π(𝑛) ≥ 0 ≥ Eπ(𝑛 + 1) なる 𝑛 ∈ {0,1,2,⋯ , 𝑗} 

が存在することを仮定すれば (定理 5,6) より Nash 均衡が存在し、その均衡店舗数は⼀意

に定まる。この式の形と仮定を⾒⽐べれば明らかなように、実は前節で述べた 𝑅𝐶𝐺(𝐽) の 

利潤関数の推定⽅法と全く同様にして期待利潤関数の推定を⾏うことができるのである。 

ここでは推定する期待利潤関数 𝐸Π: {1,2,⋯ ,𝑀} × {0,1,2,⋯ , 𝐽, 𝐽 + 1} × ℕ × ℕ × {0,1} ×

Σ ×Θ → ℝ を 

EΠ(𝑚, 𝑛,𝑀𝑆,𝑁𝑆, 𝐼, σ, θ) = R
∞																																																																														if					𝑛 = 0

𝐸𝑉(𝑛,𝑀𝑆,𝑁𝑆, 𝐼, σ, θ)𝑆(𝑀𝑆,𝑁𝑆, 𝐼, θ) − Γ(𝐼, θ) + ε(			if					𝑛 ∈ {1,2,⋯ , 𝐽}
								−∞																																																																									if				𝑛 = 𝐽 + 1

 

と定義する。この定義で前節と異なるところのみ説明しておこう。𝐸𝑉: {1,2,⋯ , 𝐽} × ℕ × ℕ ×

{0,1} × Σ ×Θ → ℝ は参⼊店舗数に関して減少的な関数であり、𝐸π における 𝑆 の係数に相

当する。特に注意すべきは、𝐸𝑉 はシェアに依存する点であり、これはのちの特定化でそう

するようにシェアによる期待値をとるのである。 

 これをもとに尤度関数を作成し最尤推定量を求めるという⽅法は前節と全く同じである

ため、その説明はここでは省くこととする。この最尤推定量により、チェーンカルテルを概

観することができるのである。 

 

3.3 利潤関数・期待利潤関数の特定化 
3.3.1 Model 1：⼀般的な 𝑹𝑪𝑮(𝑱) の利潤関数の推定 

 まずは、上武ら (2021) と同様に特段強い仮定をおくことなく 𝑅𝐶𝐺(𝐽) の利潤関数を推

定するモデルを作ってみよう。3.1節で 

Π(𝑚, 𝑛,𝑀𝑆,𝑁𝑆, 𝐼, θ) = �
∞																																																																										if					𝑛 = 0

𝑉(𝑛,𝑀𝑆,𝑁𝑆, 𝐼, θ)𝑆(𝑀𝑆,𝑁𝑆, 𝐼, θ) − Γ(𝐼, θ) + ε'						if					𝑛 ∈ {1,2,⋯ , 𝐽}
								−∞																																																																						if				𝑛 = 𝐽 + 1

 

という利潤関数を与えたが、これを次のように特定化する。 

𝑉(𝑛,𝑀𝑆,𝑁𝑆, 𝐼, θ) = �α* −Rα4

=

42-

� + α@𝐼, 

𝑆(𝑀𝑆,𝑁𝑆, 𝐼, θ) = 𝑀𝑆 + λ(1 − I)𝑁𝑆,	 

Γ(𝐼, θ) 	= γ + γ@𝐼							 

各パラメーターの説明をしておこう。まず α* ∈ ℝ! は、離島でない独占市場における可変

利潤である。そして、α4 ∈ ℝ!! (𝑘 ∈ {2,3,⋯ , 𝐽}) は、𝑘 店舗⽬の参⼊による可変利潤の減少
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分を表す。これを正としているのは、3.1節でおいた減少性の仮定を満たすようにするため

である。また、α@ ∈ ℝ は、離島であることによる可変利潤の増加分を表す。これが正なら

離島の⽅が多くの可変利潤を得られることになり、負なら本島の⽅が多くの可変利潤を得

られることとなる。𝑉 は消費者数 𝑀𝑆,𝑁𝑆 に依存することを許していたが、今回⽤いるモ

デルでは、これらに依存しない特定化を⾏っている。このようにすることで 3.1.3項で述べ

た参⼊閾値の導出⽅法をそのまま適⽤することができるのである。 

 次に 𝑆,Γ の特定化で⽤いられているパラメーターの説明をしておこう。まず λ ∈ [0,1] 

は市場が抱える隣接市場の消費者数の割合を表す。ここで 𝑁𝑆 に 1 − 𝐼 を乗じているのは、

本島の場合にしか隣接市場が存在しないからである。また、γ ∈ ℝ! は本島の店舗の固定費

⽤を表し、γ@ ∈ ℝ は店舗が離島にあることによる固定費⽤の増分を表す。これらにより、

⺟数空間は Θ = ℝ! ×ℝ!!
/)* ×ℝ× [0,1] × ℝ! ×ℝ と表すことができる。 

 

3.3.2 Model 2：⼀定価格・線形可変費⽤の仮定下での 𝑹𝑪𝑮(𝑱) の利潤関数の推定 

 次に、2.2.4 項の議論を参考に特定化を⾏うこととする。ここでは、価格が企業数に依存

しないことと、可変費⽤関数が線形であることを仮定しており、利潤が各 𝑛 ∈ {1,2,⋯ , 𝐽} に

対して 

π(𝑛) =
(𝑝 − 𝑐)(𝑤"))*(𝑝)

𝑛 𝑆 − 𝐹 

と表されるのであった。そこで次のように 𝑉 を特定化する。 

𝑉(𝑛,𝑀𝑆,𝑁𝑆, 𝐼, θ) =
α + α@𝐼
𝑛  

この α ∈ ℝ! は本島の独占店舗の可変利潤を表し、𝑛 店舗参⼊している本島の市場の可変

利潤は α/𝑛 となる。また、α@ ∈ ℝ は離島であることの可変利潤の増分を表している。ただ

し、𝑛 店舗参⼊している場合には、離島であることによる可変利潤の増分は α@/𝑛 となるの

で、Model 1 の α@ とは別物であることに注意せねばならない。また、𝑆,Γ は Model 1 と

全く同じ特定化を⾏う。このとき⺟数空間は Θ = ℝ! ×ℝ× [0,1] × ℝ! ×ℝ と表される。

Model 1 ではパラメーターの数が⾮常に多くなる可能性があり、最尤推定量が標本にフィッ

トしようとしすぎるあまり⺟集団をうまく表現できない可能性がある。それに対して、この

Model 2 は簡潔なものになっており、さらに後述するように、Model 1 とさほど変わらない

結果を⽣む。 

 



 

 28 

3.3.3 Model 3：線形可変費⽤の仮定下での 𝑪𝑪𝑮(𝑪𝑪, 𝑱) の期待利潤関数の推定 

 最後に、𝐶𝐶𝐺(𝐶𝐶, 𝐽) の期待利潤関数を特定化してみよう。Model 2 の最尤推定量により

導かれる可変利潤は Model 1 のそれとさほど変わらないのであったので、ここでも線形可

変費⽤の仮定を適⽤し、2.3.3 項の議論をもとに特定化を⾏う。この仮定の下では、期待利

潤関数は各 𝑛 ∈ {1,2,⋯ , 𝐽} に対して 

𝐸π(𝑛) =
∑ σ4P(1 − 𝑓4)(𝑝4 − 𝑐)(𝑤"))*(𝑝4)Q7!*
42*

𝑛 𝑆 − 𝐹 

を満たすのであった。そこで 𝐸𝑉 を 

𝐸𝑉(𝑛,𝑀𝑆,𝑁𝑆, 𝐼, θ) =
∑ σ4(α4 + α@𝐼)7!*
42*

𝑛  

と特定化する。Model 2 で全店舗⼀定としていた α をチェーンあるいは独⽴系ごとに分け 

α4 ∈ ℝ! とするのである。また、α@ は Model 2 のものと全く同じで、離島であることによ

る可変利潤の増分はどのチェーンに属していても、あるいはチェーンに属していなくても

等しいと仮定するのである。𝑆,Γ は Model 1 と全く同じ特定化を⾏う。このとき⺟数空間

は Θ = ℝ!6!* ×ℝ× [0,1] × ℝ! ×ℝ と表される。 

 この特定化において、本島の市場では α4  、離島の市場では α4 + α@  が (1 − 𝑓4)(𝑝4 −

𝑐)(𝑤"))*(𝑝4) に対応する。つまり、データからは観察できないチェーンカルテルの要素 

𝑝4 , 𝑓4 ⾃体を推定することはできないが、これらが⼊った式を推定することができ、チェー

ンカルテルのあらましを確認することができるのである。 

 

3.4 データの説明と分析結果 
3.4.1 データの説明と概観 

 今回の実証分析に⽤いるデータの説明をしておこう。今回は市町村ごとに地理的な市場

が 構 成 さ れ て い る と 仮 定 し た 。 ま ず 、 参 ⼊ 店 舗 数  𝑛'  と シ ェ ア  σ' =

Pσ'*, σ'-, ⋯ , σ'7 , σ'(7!*)Q は、e燃費と i タウンページから収集した。参⼊店舗数について

は、これらの両⽅から各市町村の SS 数を収集し、その最⼤値を 𝑛' として適⽤した。また、

シェアは e燃費から収集した。σ'(7!*) は本来独⽴系 SS のシェアであるべきであるが、今

回はチェーンに属しているのか判明しなかったものも含めたシェアをとっている。なお、e

燃費で収集したデータは 2024 年 6 ⽉ 22 ⽇時点において過去 30 ⽇以内の情報を反映した

ものであり、i タウンページのものは、同年 9⽉ 18 ⽇に集めたものである。 
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また、消費者数 𝑀𝑆', 𝑁𝑆' は沖縄総合事務局陸運事務所 (2024) に掲載されている市町

村ごとの登録⾃動⾞台数を⽤いた。これは 2024 年 3⽉ 31 ⽇時点の情報である。これらは、

利潤関数や期待利潤関数を推定する際には単位を百万⼈とし、参⼊閾値を導出する際には

単位を 1⼈に戻してある。そして離島のとき 1 をとるダミー 𝐼' は地図を参照して作った。 

 これらのデータを概観してみよう。(図 3-1) は各市場に SS がどれだけ参⼊しているかを

表した地図である。これを⾒ると、7 割以上の市町村では SS 数が 10以下となっており、全

体的に SS 数が少ないことがわかる。また、市町村と登録⾃動⾞台数の関係は (図 3-2) の

散布図を⾒ればわかるように線形に近いものとなっている。実際に Model 2 で導出される 

𝑆= は 𝑛 に関して線形となっている。そして、(図 3-1) からもわかるように離島として扱

った市場の割合は 36.6%である。チェーンのシェアについては第 1 章で確認した通りであ

る。 

 

3.4.2 Model 1 の推定結果と参⼊閾値の導出 

 Model 1 の推定結果は (表 3-1) である。なお、このモデルでは端点 𝑛 = 𝐽 において異常

値が発⽣するため、推定結果には掲載していない。この結果を⾒ると、10 店舗⽬の参⼊あ

たりまでは可変利潤が⼤きく減少することがわかる。店舗数がそれよりも⼤きくなると可

変利潤の変化はあまりなくなるが、これは直感に合う結果といえよう。 

また、離島であることによる可変利潤の増分 α@ は正になっており、離島では本島よりも

可変利潤が⼤きくなることがわかる。また、λ は 0となっているが、これは各市場で打ち消

されあっているのだろう。さらに γ@ は負であるので、離島は本島よりも固定費⽤が⼩さい

ことが明らかになった。これは販売量に関係ない費⽤、例えば⼈件費が、離島の⽅が安く済

むことに起因するということができるだろう。 

このモデルにより導出された参⼊閾値は (表 3-2) の通りである。これを⾒ると、追加的

な参⼊による競争の度合いの増加の指標である 𝑠=!*/𝑠= は参⼊店舗数によらず 1 付近を推

移していることがわかる。この結果は、競争が⾏われていない可能性を⽰唆するものである

といえよう。 

 

3.4.3 Model 2 の推定結果と参⼊閾値の導出 

 (表 3-3) は Model 2 の推定結果である。これによれば、α と α@ は近い値をとっており、

離島であることにより可変利潤が倍増することがわかる。また、Model 1 と同様 λ の推定
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値は 0となった。そしてこのモデルでは、γ@ の推定値が 0となっており、本島でも離島で

も固定費⽤は変わらないという結果となった。 

なおこのモデルでは、𝑉 の定義により 𝑠= は 𝑛 によらず⼀定となり、𝑠=!*/𝑠= は常に 1

となる。Model 1 でこの値が 1 前後を推移していたことは、このモデルの妥当性を⽰す 1

つの根拠となるであろう。そこで実際に導出してみると 𝑠= = 2699.29  となり、𝑆= =

2699.29𝑛 が成⽴する。 

 この Model 2 は、いささか強い仮定をおいたものであったが、果たしてどれほどよく説

明⼒を持つモデルなのだろうか。この疑問を解消するために、Model 1 との⽐較を⾏おう。

そこでまず、本島・離島それぞれの SS 数でウェイトづけることで平均をとった可変利潤 

∑ 𝑛'𝑉P𝑛,𝑀𝑆,𝑁𝑆, 0, θ�Q'∈{'∈{*,-,⋯,9} | @#2A} + ∑ 𝑛'𝑉P𝑛,𝑀𝑆,𝑁𝑆, 1, θ�Q'∈{'∈{*,-,⋯,9} | @#2*}

∑ 𝑛'9
'2*

 

の参⼊店舗数による推移を表した (図 3-3) を⾒てみよう。これにより、2 つのモデルによ

り導出される可変利潤は⾮常に近い値をとることが明らかになる。したがって、Model 1 よ

りもよほど簡潔に特定化を⾏った Model 2 は、現実をよく表現するものであるといえるだ

ろう。また、𝑆= の⽐較を⾏った (図 3-4) を⾒ると、むしろ Model 2 によるものの⽅が観

測値をよく表現している。これは、Model 1 がデータにフィットしすぎているために起こる

ものであると考えられる。 

 このように Model 2 の妥当性が⽰されたことにより、Model 3 においた仮定もまた妥当

性を持つということができるようになるのである。 

 

3.4.4 Model 3 の推定結果とチェーンカルテルの考察 

 Model 3 の最尤推定量は (表 3-4) の通りである。なお、結果を確認しやすくするために

チェーンの添字 𝑘 の代わりにチェーン名を添字とした。ここで特筆すべきはやはり左列、

チェーンカルテルの指標である。⽯油やエネルギーを専⾨に扱う企業が運営する ENEOS や

apollostation、コスモ⽯油に⽐べて、総合商社系の伊藤忠エネクス、三菱商事エネルギーは 

α の値が明らかに⼩さいことがわかる。これは、総合商社はその多⾓的な経営により SS で

⼤きな利潤を得る必要がないことを表現しているといえよう。また、農業協同組合がその正

式名称である JAが運営する SS も、⼤きな利潤を得ようとはしていないことがわかる。 
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3.5 総括 
 本論⽂での実証分析では、⼩売同⼠の競争を前提とした 2 つのモデルとチェーンたちが

カルテルを組んでいることを前提としたモデルを構築し、その利潤や期待利潤の推定を⾏

った。前者では、離島の⽅が本島よりも可変利潤が⼤きく、固定費⽤は本島以下であること

が明らかになった。これは、販売数量に依存する費⽤と、⼈件費など販売数量に依存しない

費⽤がどちらも本島より離島の⽅が⼩さいことによるものといえよう。また、参⼊閾値の導

出においては競争の度合いの増加を⽰す指標である 𝑠=!*/𝑠= が 1 付近を推移するという結

果となり、競争が⾏われていない可能性が⾼いといえる。 

 さらに、簡潔さと仮定の強さについて異なる特徴を持つ 2 つのモデルがどのような差異

を⽣むかというのを図にして確認した。その結果、うまく仮定をおけば簡潔なモデルでも説

明⼒を持つことが明らかになった。 

 また、⼩売同⼠の競争は⾏われていない可能性が⾼いという結果になったので、そもそも

競争が⾏われずに、チェーンたちの決め事に従うことを前提にしたモデルを構築し期待利

潤の推定を⾏ったわけであるが、この結果では、エネルギーを中⼼に扱う商社と総合商社と

の間で戦略に⼤きな差があることが⽰唆された。 
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図 3-1  SS 数の度数分布地図 

 
                     離島として扱った市町村は点線で囲んだ。 
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図 3-2 登録⾃動⾞台数と SS 数の関係 
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表 3-1 Model 1 の推定結果 

 推定値  推定値  推定値  推定値 

 (標準誤差)  (標準誤差)  (標準誤差)  (標準誤差) 

α* 767.92 α*C 8.41 α-D 0.00 αEF 0.00 

 (0.00)  (8.40)  (93.41)  (154.71) 

α- 292.75 α*G 0.00 αFA 3.36 αEE 0.00 

 (90.98)  (79.36)  (3.35)  (154.71) 

αF 104.00 α*H 0.00 αF* 0.00 αEC 0.00 

 (44.44)  (79.36)  (57.95)  (154.71) 

αE 88.29 α*I 0.00 αF- 0.00 αEG 0.00 

 (41.14)  (79.36)  (57.95)  (154.71) 

αC 20.48 α*D 0.00 αFF 5.42 αEH 0.00 

 (19.84)  (79.36)  (5.43)  (154.71) 

αG 87.48 α-A 5.85 αFE 2.95 αEI 0.00 

 (42.51)  (5.85)  (2.96)  (154.71) 

αH 45.28 α-* 0.00 αFC 0.00 αJ 1.22 

 (23.76)  (57.13)  (154.71)  (28.69) 

αI 9.20 α-- 0.00 αFG 0.00 λ 0.00 

 (8.97)  (57.13)  (154.71)  (0.01) 

αD 26.81 α-F 0.00 αFH 0.00 γ 3.13 

 (17.43)  (57.13)  (154.71)  (0.72) 

α*A 17.98 α-E 0.00 αFI 0.00 γ@ -1.56 

 (16.66)  (57.13)  (154.71)  (0.75) 

α** 0.00 α-C 21.24 αFD 0.00   

 (34.01)  (16.24)  (154.71)   

α*- 8.20 α-G 6.00 αEA 0.00   

 (8.19)  (5.79)  (154.71)   

α*F 0.00 α-H 0.00 αE* 0.00   

 (67.10)  (93.41)  (154.71)   

α*E 0.00 α-I 0.00 αE- 0.00   

 (67.10)  (93.41)  (154.71)   
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表 3-2  Model 1 により導出された参⼊閾値 

𝑛 𝑆= 𝑠= 
𝑠=!*
𝑠=

 𝑛 𝑆= 𝑠= 
𝑠=!*
𝑠=

 

1 3645 3645 0.81 25 86909 3476 1.18 

2 5889 2945 0.85 26 106783 4107 0.96 

3 7538 2513 0.98 27 106783 3955 0.96 

4 9889 2472 0.86 28 106783 3814 0.97 

5 10660 2132 1.25 29 106783 3682 1.11 

6 15984 2664 1.16 30 122456 4082 0.97 

7 21556 3079 0.94 31 122456 3950 0.97 

8 23199 2900 1.14 32 122456 3827 1.27 

9 29822 3314 0.11 33 160542 4865 1.17 

10 36886 3689 0.91 34 193246 5684 0.97 

11 36886 3353 1.02 35 193246 5521 0.97 

12 41350 3446 0.92 36 193246 5368 0.97 

13 41350 3181 0.93 37 193246 5223 0.97 

14 41350 2954 1.07 38 193246 5085 0.97 

15 47213 3148 0.94 39 193246 4955 0.98 

16 47213 2951 0.94 40 193246 4831 0.98 

17 47213 2777 0.94 41 193246 4713 0.98 

18 47213 2623 0.95 42 193246 4601 0.98 

19 47213 2485 1.05 43 193246 4494 0.98 

20 52375 2619 0.95 44 193246 4392 0.98 

21 52375 2494 0.95 45 193246 4294 0.98 

22 52375 2381 0.96 46 193246 4201 0.98 

23 52375 2277 0.96 47 193246 4112 0.98 

24 52375 2182 1.59 48 193246 4026 − 
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表 3-3  Model 2 の推定結果 

 推定値 

 (標準誤差) 

α 799.87 

 (139.24) 

α@ 782.96 

 (389.24) 

λ 0.00 

 (0.01) 

γ 2.61 

 (0.50) 

γ@ 0.00 

 (0.01) 

 

 

 

図 3-3 Model 1,2 により推定された可変利潤 
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図 3-4  Model 1,2 により導出された参⼊閾値とデータの観測値 

 
 

表 3-4 Model 3 の推定結果 

 推定値  推定値 

 (標準誤差)  (標準誤差) 

αKLKMN 776.80 α@ 1651.30 

 (219.78)  (468.75) 

α@OMPQR 182.31 λ 0.05 

 (205.48)  (0.03) 

αSTMUUM 997.5117 γ 2.39 

 (443.03)  (0.45) 

α/S 249.21 γ@ 0.37 

 (245.86)  (0.76) 

αPMN9M 380.84   

 (634.17)   

α9@ONRV@NQ@ 96.36   

 (3689.82)   

αMOQKWN 406.40   

 (168.86)   
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結語 
 

 本論⽂では、第 1 章では⾃動⾞やエネルギーに関する諸産業の現状や、今回実証分析を

⾏った沖縄県の SS 市場を概観し、SS 市場の経済学的な分析を⾏うことが重要であること

を確認した。 

 第 2 章では、Bresnahan and Reiss (1991) で論じられている参⼊ゲームをもとにいくつか

の⾮協⼒ゲームを定義し、その Nash 均衡について議論を⾏った。最初にプレイヤーの数が

有限である場合の⼩売店舗たちが競争を⾏うゲームを取り扱い、その後にチェーン企業た

ちがカルテルを組んでいることを前提としたゲームについて論じた。さらにそれをプレイ

ヤーの集合が実数全体である場合に拡張し、改めてその Nash 均衡が持つ性質を確認した。

この章では、本論⽂を通じた参⼊⾏動の考え⽅が、よく知られる戦略型ゲームにより扱える

ことを確認したのである。また、丁寧に証明を⾏っておくことで、第 3 章で論じられる実証

分析の妥当性を⽰したともいえよう。 

 第 3 章では、第 2 章で議論したいくつかのゲームをもとに実証分析を⾏った。最初に⼩

売店舗たちの競争を前提としたゲームの利潤関数の推定をし、その結果からは、離島の店舗

の⽅が沖縄本島のそれよりも多くの可変利潤を得ることが明らかになった。また、競争の度

合いが店舗数にほとんど依存していないことが明らかとなり、そもそも競争が⾏われてい

ない可能性が⾼まった。そこでカルテルを前提とした分析を⾏ったのである。その結果を確

認すると、エネルギー系の商社は⼤きな可変利潤を得ており、総合商社はあまり多くの可変

利潤を得ていないことがわかる。総合商社はその多⾓的な経営により SS についてはいわゆ

る薄利多売を⾏っているといえよう。 

 この論⽂では、以上の議論により、理論的にも実証的にも SS 市場の現状を確認できたの

である。 
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あとがき 
 

 筆者は、慶應義塾⼤学経済学部に在籍した 4 年間の集⼤成というつもりでこの論⽂を執

筆した。第 2 章においては、ミクロ経済学やゲーム理論、そして数学の講義で学んだものを

最⼤限に⽣かして理論を築いた。そして第 3 章における実証分析を⾏う過程では、計量経

済学等の学びが⼤きな助けになった。このようにして厳密に構築された理論をもとに⾏わ

れる実証分析は、ディスアドバンテージとなるサンプルサイズの⼩ささを帳消しにするよ

うな綺麗な結果を⽣んだ。多くの良い実証結果が導かれたことに加えて、実証分析の重要性

が⽇に⽇に⾼まってゆく今⽇に理論の重要性を改めて確認できたことは、⼤学院で経済理

論を専攻する予定である筆者にとって⼤変嬉しいことである。 

 今回主に⽤いた先⾏研究 Bresnahan and Reiss (1991) は、三⽥祭論⽂においても⼤きく

参考にしたものであり、⽯橋孝次研究会においての研究活動は、参⼊ゲームをひたすら考え

るものであったといえよう。さらに論⽂執筆以外の⾯では、産業組織に関する話題を広範に、

なおかつ深く学んだ。理論としては、古典的な A. Cournot の独占・寡占といったものから

プラットフォームやイノベーションといった新しいものまで知ることができた。実証の⽅

⾯では、S. Berry らの貢献が有名であるロジスティック回帰に関するものをはじめとして、

ここ 30,40年で⼤きな発展を⾒せた実証産業組織の様相の知⾒を得た。 

このように研究会で多くの学びが得られたのは、⽯橋教授はもちろんのこと、2 年間共に

過ごしてきた同期や、1 年間ずつお世話になった先輩や後輩のおかげである。独習では到底

得られない沢⼭の学びを⼿に⼊れることができたのは、皆で毎週輪読を積み重ねた結果で

あろう。放課後に幾度か⾏われた飲み会などにおいて楽しく交流を⾏えたことも相まって、

この研究会に所属していたことで、三⽥で過ごした 2 年間は⼤変充実したものとなった。 

さらに、これまでの 23 年弱筆者と共に過ごした家族には⼤変感謝をしている。殊に両親

は学費を⽀払って下さったし、⼤学院に進学することも応援して下さった。改めてここに感

謝を申し上げる。 

2 年間の研究会でお世話になった⽯橋孝次教授には感謝をしてもしきれない。研究会の活

動においては沢⼭のご指導をいただき、卒業論⽂を執筆する際には⼤きな助⾔を下さった。

筆者は今後の修⼠課程においても⽯橋教授のご指導を受けることになっている。このよう

に⼤変お世話になった先⽣のご指導を引き続き賜われることは、この上ない喜びであり、4

⽉から始まる⼤学院⽣としての⽣活に胸が⾼まるばかりであるが、⼀つ学部卒業という区

切りであるので、今⼀度感謝を申し上げて卒業論⽂を締めくくることとする。 


